Efficient Interval Linear Equality Solving in Constraint Logic Programming

نویسندگان

  • Chong-Kan Chiu
  • Jimmy Ho-Man Lee
چکیده

Existing interval constraint logic programming languages, such as BNR Prolog, work under the framework of interval narrowing and are deficient in solving systems of linear constraints over real numbers, which constitute an important class of problems in engineering and other applications. In this paper, we suggest to separate linear equality constraint solving from inequality and non-linear constraint solving. The implementation of an efficient interval linear constraint solver, which is based on the preconditioned interval Gauss-Seidel method, is proposed. We show how the solver can be adapted to incremental execution and incorporated into a constraint logic programming language already equipped with a non-linear solver based on interval narrowing. The two solvers share common interval variables, interact and cooperate in a round-robin fashion during computation, resulting in an efficient interval constraint arithmetic language CIAL. The CIAL prototypes, based on CLP(R), are constructed and compared favorably against several major interval constraint logic programming languages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Practical Interval Constraint Solving in Logic Programming

Existing interval constraint logic programming languages, such as BNR Pro-log, work under the framework of interval narrowing and are deecient in solving linear systems, which constitute an important class of problems in engineering and other applications. In this paper, an interval linear equality solver, which is based on generalized interval arithmetic and Gaussian elimination , is proposed....

متن کامل

A New Method for Solving the Fully Interval Bilevel Linear Programming Problem with Equal Constraints

Most research on bilevel linear programming problem  is focused on its deterministic form, in which the coefficients and decision variables in the objective functions and constraints are assumed to be crisp. In fact, due to inaccurate information, it is difficult to know exactly values of coefficients that used to construct a bilevel model. The interval set theory is suitable for describing and...

متن کامل

Providing a Method for Solving Interval Linear Multi-Objective Problems Based on the Goal Programming Approach

Most research has focused on multi-objective issues in its definitive form, with decision-making coefficients and variables assumed to be objective and constraint functions. In fact, due to inaccurate and ambiguous information, it is difficult to accurately identify the values of the coefficients and variables. Interval arithmetic is appropriate for describing and solving uncertainty and inaccu...

متن کامل

Linear time-dependent constraints programming with MSVL

This paper investigates specifying and solving linear time-dependent constraints with an interval temporal logic programming language MSVL. To this end, linear constraint statements involving linear equality and non-strict inequality are first defined. Further, the time-dependent relations in the constraints are specified by temporal operators, such as ©, ©,prj, ; , . Thus, linear time-dependen...

متن کامل

The Use of Interval-Valued Probability Measures in Fuzzy Linear Programming: a constraint set approach

This paper uses a constraint set approach to linear programming problems with equality constraints whose coefficients and/or right-hand side values could be uncertain. We consider three types of uncertainty: probabilistic, fuzzy/possibilistic, and interval. The constraint set generated by the linear constraints under uncertainty is illdefined and difficult to generate. Our approach computes an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Reliable Computing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2002